Paul A Rosen
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA 91109 USA

Use of Satellites and Integrated Technologies for Humanitarian Purposes Varese, Italy

The Shuttle Radar Topography Mission: "Low resolution" Digital Topography of the World

September 19, 2000

This research was carried out at the let Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration

The SRTM Challenge: Bits to Beauty

Process from raw data

In-board: 101100

Out-board: 1 0 0 1 0 1,

To elevations

 For the world, twice+, in two years

Mission Processing: Feb 11-22, 2000

- Generated 0.5 M km² of topography and imagery during the mission
- Exercised Beam-tobeam mosaicking, creating 225 km swaths
- Helped verify interferometer system performance
 - Downlinked datatake every 40 minutes

USITHP, Vale Italy

SRTM Algorithmic Flow

USITHP, Vales Italy

SRTM Ground Data Picessing System

SRTM Production System Architecture

Pre-production Calibration Activities

- Corner Reflector Arrays and Short Ocean Data Takes
 - Absolute and relative channel delays
 - Timing constants
 - Roll constants
- Long Ocean Data Takes
 - Systematic trends
 - Radar state changes

Pre-production Sample Data Sets

- NIMA Sites
- PI Science Sites
 - Funded NASA PI requests to be prioritized
- Large Scale DEM Mosaic
 - Much of Western US,
 but complete ascending/
 descending coverage
 only in California
 - Accuracy approaching final product accuracy
 - Availability tied to delivery of final motion solution

Some SRTM Froducts

- Mosaicked Terrain Height in DTED-2 Format
 - 1° x 1° cells
 - Equiangular projection
 - 16 bit fixed point in decimeters
- Mosaicked Terrain Height Er or in NITF Format
 - Identical cell pixelation and proction to terrain height
 - Quantization and scale TBD
- Mosaicked Ascending and Descending Image in NITF Format
 - "Nearest to 45 degrees" priority for multiple observations (not averaging of brightnesses)
 - Identical cell pixelation and projection to terrain height
 - Quantization, compression, and scale TBD

Expected Coverage (or Better)

SRTM Product Verification

- Verification of the height product takes advantage of
 - accurate control points, globally distributed
 - several fine-accuracy DEMs.
 - Kinematic GPS surveys

KGPS transects in Asia and Middle East needed, currently under investigation by NIMA

 World's first systematic topographic error model, continent by continent

SRTM Interferometric Processing Why does it take 2 years?

- Ground system still under development through 2000 per project funding profile
- Additional products recently added to nominal plan increase development time
- Interferometric cartography is exacting. The shuttle interferometer system is dynamically complex. It takes time to sort out all contributors to error.
 - Shuttle attitude, boom metrology, radar relative phases must be known for each time instant to microradians, millimeters, and degrees.
 - Map to be accurate to ~15m absolute on a body of dimension 40,000,000 m circumference. (3 x 10⁻⁷)
- The radar interferometer is a complex system.
 - Of order 15 distinct radar states, each requiring phase and possibly baseline calibration

More of why it takes 2 years to process SRTM data

- One year of production is quite fast for 11 Terabytes of raw data
 - ~14,000 1° x 1° cells, each with ascending/descending passes
 - · 40 cells per day, each with Q/A, estimated errors and other statistics
 - · Continental scale bundle adjustment for self-consistency and reduced systematic errors
- One year of production contains margin for reprocessing
- There are two global maps to produce, ascending and descending
- Continents are phased deliveries over the year.
- SRTM will complete a job that other technologies could not in many more years

SRTM Year 2000 Digital World Topography

Coming to databases near you in 2002...